Use “c” when you want to use it a signal in black scholes formula.
read.table function will be used to get the data into R (/\ used opposite
than the one used in windows)
http://www.ats.ucla.edu/stat/r/faq/inputdata_R.htm.
Example 1
> test.txt <- read.table ("C:/Documents and Settings/shivbhakta.joshi/My
Documents/test.txt", header=T)
> print(test.txt)
> column <- test.txt[,c('make','price')].
Example 2
grb <- read.table ("C:/Documents and Settings/shivbhakta.joshi/My
Documents/GRB_afterglow.dat", header=T, skip=1)
x <- (grb[,1]).
Grabbing data from tables into a single dimensional array
x <- (grb[,1])
y <- log(grb[,1]).
Another way to create returns for stock daily return is
f=dft$age/dft$price (using dollar sign extraction)
Deleting column http://www.sr.bham.ac.uk/~ajrs/R/r-manipulate_data.html
> add <- add[-2] to delete the element 2nd
Adding data to array busing column command
> add <- c(1,d).
Using Data frames
Data.frame is used to combine the arrays back into table format
people = data.frame (x,y)
Write.CSV command executed
write.csv(people,"filename.csv")
grb <- read.table ("C:/Documents and Settings/satyadhar.joshi/My
Documents/GRB_afterglow.dat", header=T, skip=1)
x <- (grb[,1])
y <- log(grb[,1])
people = data.frame (x,y)
write.csv(people,"filename.csv")
These methods can be used to compute beta from columns of a csv file.
Working formula of Black Scholes
BS <-
function(S, K, T, r, sig, type="C"){
d1 <- (log(S/K) + (r + sig^2/2)*T) / (sig*sqrt(T))
d2 <- d1 - sig*sqrt(T)
if(type=="C"){
value <- S*pnorm(d1) - K*exp(-r*T)*pnorm(d2)
}
if(type=="P"){
value <- K*exp(-r*T)*pnorm(-d2) - S*pnorm(-d1)
}
return(value)
}
Black Scholes <- function(s, k, r=.1, t=5, sigma=.9,call=TRUE) {
#calculate call/put option
d1 <- (log(s/k)+(r+sigma^2/2)*t)/(sigma*sqrt(t))
d2 <- d1 - sigma * sqrt(t)
ifelse(call==TRUE,s*pnorm(d1) - k*exp(-r*t)*pnorm(d2),k*exp(-r*t)
* pnorm(-d2) - s*pnorm(-d1))
}
Predefined Black schools model:
http://shafik.net/~shafik/FinancialEngineering/Code/
black_scholes ("c",5600,5600,.1,.08,.22 )
this depicts use of functions in R.
Merton Distance to Default (different as per needs)
ARIMA and Forecasting Using R
Commands:
library(Quandl)
> Quandl.auth("1LkmpypqJskJzKcpd2TV")
>stockData=Quandl("YAHOO/INDEX_GSPC", start_date="2004-01-01", end_date="2014-04-17")
stockData[,7]
// ran Arima here:
results2=arima(stockData[,7], order = c(3,0,0))
fit <- arima(myts, order=c(p, d, q)
fit <- arima(stockData[,7],order = c(3,0,0))
results=arima(stockData[,7])
fit <- arima(stockData[,7],order = c(3,0,0))
predict(arima(stockData[,7], order = c(3,0,0))
results=arima(stockData[,7])
x2=(forecast(fit, 100))
plot(x2).
Excel and R:
http://rcom.univie.ac.at/download.html#statconnDCOM
http://www.r-bloggers.com/a-million-ways-to-connect-r-and-excel/
http://cran.r-project.org/web/packages/XLConnect/vignettes/XLConnect.pdf
http://cran.r-project.org/web/packages/XLConnect/XLConnect.pdf
https://stat.ethz.ch/R-manual/R-patched/library/base/html/getwd.html
Playing with arrays and matrix
http://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-my-matrices-lose-dimensions_003f
https://stat.ethz.ch/pipermail/r-help/2008-February/154088.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/rev.html.
ARIMA and Predict statement
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/predict.arima.html
http://people.duke.edu/~rnau/411arim.htm
http://www.statmethods.net/advstats/timeseries.html
http://stackoverflow.com/questions/14272937/time-series-prediction-using-r
http://www.inside-r.org/packages/cran/forecast/docs/forecast.Arima.
Market check
http://www.bloomberg.com/quote/SPX:IND/chart.
Other good References
http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf.
One on One Customized Training:
qcfinance.in believes in personalized touch so that our clients are completely satisfied with our service. In this regard, we offer One on One Customized Training to our clients.
These Trainings are provided on request by our clients & are customized according to their individual needs.
The course structure & timings for these training are highly flexible, classes are scheduled as per the convenience of our clients.
Contact Us for More details: info@qcfinance.in.